

Todoman

Todoman is a simple, standards-based, cli todo (aka: task) manager. Todos
are stored into icalendar [https://tools.ietf.org/html/rfc5545] files, which means you can sync them via CalDAV [http://en.wikipedia.org/wiki/CalDAV]
using, for example, vdirsyncer [https://vdirsyncer.readthedocs.org/].

Todoman is now part of the pimutils project, and is hosted at GitHub [https://github.com/pimutils/todoman].

Features

	Listing, editing and creating todos.

	Todos are read from individual ics files from the configured directory. This
matches the vdir [https://vdirsyncer.readthedocs.org/en/latest/vdir.html]
specification.

	There’s support for the most common TODO features for now (summary,
description, location, due date and priority).

	Runs on any Unix-like OS. It’s been tested on GNU/Linux, BSD and macOS.

	Unsupported fields may not be shown but are never deleted or altered.

Contributing

See Contributing for details on contributing.

Caveats

Support for the percent-completed attribute is incomplete. Todoman can only
mark todos as completed (100%), and will not reflect nor allow editing for
values for percent > 0 ^ percent < 100.

Table of Contents

	Installing
	Distribution packages

	Installation via PIP

	Manual installation

	bash autocompletion (optional)

	zsh autocompletion (optional)

	Requirements

	Notes for Packagers

	Configuring
	Configuration File

	Sample configuration

	Color and displayname

	Timezone

	Usage
	Synchronization

	Interactive shell

	Integrations

	Sorting

	Man page
	Description

	Usage

	Usage
	Synchronization

	Interactive shell

	Integrations

	Sorting

	Configuring

	Configuring
	Configuration File

	Sample configuration

	Color and displayname

	Timezone

	Caveats

	Contributing

	LICENCE

	Contributing
	Hacking

	Patch review checklist

	Packaging

	Changelog
	v4.2.0

	v4.1.0

	v4.0.1

	v4.0.0

	v3.9.0

	v3.8.0

	v3.7.0

	v3.6.0

	v3.5.0

	v3.4.1

	v3.4.0

	v3.3.0

	v3.2.4

	v3.2.3

	v3.2.2

	v3.2.1

	v3.2.0

	v3.1.0

	v3.0.1

	v3.0.0

	v2.1.0

	v2.0.2

	v2.0.1

	v2.0.0

	Licence

Indices and tables

	Index

	Module Index

	Search Page

Installing

Distribution packages

If todoman is packaged for your OS/distribution, using your system’s
standard package manager is probably the easiest way to install todoman.

ArchLinux

todoman is packaged in the community [https://www.archlinux.org/packages/community/any/todoman/] repository, and can be installed using:

pacman -S todoman

macOS

todoman is packaged in homebrew [https://formulae.brew.sh/formula/todoman], and can be installed using:

brew install todoman

Installation via PIP

Since todoman is written in python, you can use python’s package managers,
pip by executing:

pip install todoman

or the latest development version by executing:

pip install git+git://github.com/pimutils/todoman.git

This should also take care of installing all required dependencies.

Manual installation

If pip is not available either (this is most unlikely), you’ll need to download
the source tarball and install via setup.py, though this is not a recommended
installation method:

python3 setup.py install

bash autocompletion (optional)

There is an autocompletion function for bash provided in the contrib
directory. If you want to enable autocompletion for todoman in bash, copy the
file contrib/autocompletion/bash/_todo to any directory you want. Typically
/etc/bash_completion.d is used for system-wide installations or
~/.bash_completion.d for local installations. In the former case, the file
is automatically sourced in most distributions, in the latter case, you will
most likely need to add:

source ~/.bash_completion.d/_todo

to your ~/.bashrc.

zsh autocompletion (optional)

There is an autocompletion function for zsh provided in the contrib
directory. If you want to enable autocompletion for todoman in zsh, copy the
file contrib/autocompletion/zsh/_todo to any directory in your $fpath.
Typically /usr/local/share/zsh/site-functions/ is used for system-wide
installations.

Requirements

Todoman requires python 3.8 or later. Installation of required libraries can be
done via pip, or your OS’s package manager.

Recent versions also have experimental support for pypy3.

Notes for Packagers

All of todoman’s dependencies are listed in the install_requires section of
the setup.py [https://github.com/pimutils/todoman/blob/main/setup.py] file. New dependencies will be clearly announced in the
CHANGELOG.rst file for each release. Patch releases (eg: those where only
the third digit of the version is incremented) will not introduce new
dependencies.

If your packages are generated by running setup.py install or some similar
mechanism, you’ll end up with a very slow entry point (that’s the
/usr/bin/todo file). Package managers should use the file included in this
repository under bin/todo and replace the above one.

The root cause of the issue is really how python’s setuptools generates these
and outside of the scope of this project.

If your packages are generated using python wheels, this should not be an issue
(much like it won’t be an issue for users installing via pip).

Additionally, jq is dependency for zsh’s autocompletion. For platforms where
zsh is the default shell, it is recommended to list jq as a dependency, for
others adding it as an optional dependency should suffice.

Configuring

You’ll need to configure Todoman before the first usage, using its simple
ini-like configuration file.

Configuration File

The configuration file should be placed in
$XDG_CONFIG_HOME/todoman/config.py. $XDG_CONFIG_HOME defaults to
~/.config is most situations, so this will generally be
~/.config/todoman/config.py.

	
cache_path

	The location of the cache file (an sqlite database). This file is used to
store todo data and speed up execution/startup, and also contains the IDs for
todos.
If the value is not specified, a path relative to $XDG_CACHE_HOME will be used.
$XDG_CACHE_HOME generally resolves to ~/.cache/.

	type

	str

	default

	"$XDG_CACHE_HOME/todoman/cache.sqlite3"

	
color

	By default todoman will disable colored output if stdout is not a TTY (value
auto). Set to never to disable colored output entirely, or always
to enable it regardless. This can be overridden with the --color option.

	type

	str

	default

	"auto"

	
date_format

	The date format used both for displaying dates, and parsing input dates. If
this option is not specified the system locale’s is used.

	type

	str

	default

	"%x"

	
default_command

	When running todo with no commands, run this command.

	type

	str

	default

	"list"

	
default_due

	The default difference (in hours) between new todo’s due date and creation
date. If not specified, the value is 24. If set to 0, the due date for new
todos will not be set.

	type

	int

	default

	24

	
default_list

	The default list for adding a todo. If you do not specify this option, you
must use the --list / -l option every time you add a todo.

	type

	str

	default

	None

	
default_priority

	The default priority of a task on creation.
Highest priority is 1, lowest priority is 10, and 0 means no priority at all.

	type

	int

	default

	None

	
dt_separator

	The string used to separate date and time when displaying and parsing.

	type

	str

	default

	" "

	
humanize

	If set to true, datetimes will be printed in human friendly formats like
“tomorrow”, “in one hour”, “3 weeks ago”, etc.

If false, datetimes will be formatted using date_format and
time_format.

	type

	bool

	default

	False

	
path

	A glob pattern matching the directories where your todos are located. This
pattern will be expanded, and each matching directory (with any icalendar
files) will be treated as a list.

	type

	str

	default

	None, this field is mandatory.

	
startable

	If set to true, only show todos which are currently startable; these are
todos which have a start date today, or some day in the past. Todos with no
start date are always considered current. Incomplete todos (eg:
partially-complete) are also included.

	type

	bool

	default

	False

	
time_format

	The date format used both for displaying times, and parsing input times.

	type

	str

	default

	"%X"

Sample configuration

The below example should serve as a reference. It will read ics files from any
directory inside ~/.local/share/calendars/, uses the ISO-8601 date format,
and set the due date for new todos in 48hs.

A glob expression which matches all directories relevant.
path = "~/.local/share/calendars/*"
date_format = "%Y-%m-%d"
time_format = "%H:%M"
default_list = "Personal"
default_due = 48

Color and displayname

	You can set a color for each task list by creating a color file containing
a color code in the hex format: #RRGGBB.

	A file named displayname indicates how the task list should be named and
is needed when there are multiple directories sharing a name, e.g.: when using
multiple $CloudInstances. The default is the directory name.

See also relevant documentation for the vdir format [https://vdirsyncer.pimutils.org/en/stable/vdir.html#metadata].

Timezone

Todoman will use the system-wide configured timezone. If this doesn’t work for
you, you _may_ override the timezone by specifying the TZ environment
variable.

For instruction on changing your system’s timezone, consult your distribution’s
documentation.

Usage

Todoman usage is CLI [https://en.wikipedia.org/wiki/Command-line_interface] based (thought there are some TUI bits, and the
intentions is to also provide a fully TUI [https://en.wikipedia.org/wiki/Text-based_user_interface]-based interface).

The default action is list, which outputs all tasks for all calendars, each
with a semi-permanent unique id:

1 [] !!! 2015-04-30 Close bank account @work (0%)
2 [] ! Send minipimer back for warranty replacement @home (0%)
3 [X] 2015-03-29 Buy soy milk @home (100%)
4 [] !! Fix the iPad's screen @home (0%)
5 [] !! Fix the Touchpad battery @work (0%)

The columns, in order, are:

	An id.

	Whether the task has been completed or not.

	An !!! indicating high priority, !! indicating medium priority,
! indicating low priority tasks.

	The due date.

	The task summary.

	The list the todo is from; it will be hidden when filtering by one list, or
if the database only contains a single list.

	The completed percentage.

The id is retained by todoman until the next time you run the flush
command.

To operate on a todo, the id is what’s used to reference it. For example, to
edit the Buy soy milk task from the example above, the proper command is
todo edit 3, or todo undo 3 to un-mark the task as done.

Editing tasks can only be done via the TUI interface for now, and cannot be
done via the command line yet.

Synchronization

If you want to synchronize your tasks, you’ll need something that syncs via
CalDAV. vdirsyncer [https://vdirsyncer.readthedocs.org/en/stable/] is the recommended tool for this.

Interactive shell

If you install click-repl [https://github.com/untitaker/click-repl], todoman
gets a new command called repl, which launches an interactive shell with
tab-completion.

Integrations

When attempting to integrate todoman into other systems or parse its
output, you’re advised to use the --porcelain flag, which will print all
output in a pre-defined format that will remain stable regardless of user
configuration or version.

The format is JSON, with a single array containing each todo as a single entry
(object). Fields will always be present; if a todo does not have a value for a
given field, it will be printed as null.

Fields MAY be added in future, but will never be removed.

Conky

Todoman can be used with Conky [https://conky.cc] by using one of the shell execution
variables [https://conky.sourceforge.net/variables.html].
Given the nature of pimutils utilities, there is no need to query new information
every time conky updates so execi will be the best option most of the time.

Adding ${execi 30 todo} inside the text section will display the output of the
command and update it every 30 seconds.

A working configuration can be found here [https://github.com/r4ulill0/todoman/blob/main/docs/examples/conky.conf].

Sorting

The tasks can be sorted with the --sort argument. Sorting may be done according to the following fields:

	description

	location

	status

	summary

	uid

	rrule

	percent_complete

	priority

	sequence

	categories

	completed_at

	created_at

	dtstamp

	start

	due

	last_modified

Man page

Description

Todoman is a simple, standards-based, cli todo (aka: task) manager. Todos are
stored into icalendar files, which means you can sync them via CalDAV
using, for example, vdirsyncer.

Usage

Usage

Todoman usage is CLI [https://en.wikipedia.org/wiki/Command-line_interface] based (thought there are some TUI bits, and the
intentions is to also provide a fully TUI [https://en.wikipedia.org/wiki/Text-based_user_interface]-based interface).

The default action is list, which outputs all tasks for all calendars, each
with a semi-permanent unique id:

1 [] !!! 2015-04-30 Close bank account @work (0%)
2 [] ! Send minipimer back for warranty replacement @home (0%)
3 [X] 2015-03-29 Buy soy milk @home (100%)
4 [] !! Fix the iPad's screen @home (0%)
5 [] !! Fix the Touchpad battery @work (0%)

The columns, in order, are:

	An id.

	Whether the task has been completed or not.

	An !!! indicating high priority, !! indicating medium priority,
! indicating low priority tasks.

	The due date.

	The task summary.

	The list the todo is from; it will be hidden when filtering by one list, or
if the database only contains a single list.

	The completed percentage.

The id is retained by todoman until the next time you run the flush
command.

To operate on a todo, the id is what’s used to reference it. For example, to
edit the Buy soy milk task from the example above, the proper command is
todo edit 3, or todo undo 3 to un-mark the task as done.

Editing tasks can only be done via the TUI interface for now, and cannot be
done via the command line yet.

Synchronization

If you want to synchronize your tasks, you’ll need something that syncs via
CalDAV. vdirsyncer [https://vdirsyncer.readthedocs.org/en/stable/] is the recommended tool for this.

Interactive shell

If you install click-repl [https://github.com/untitaker/click-repl], todoman
gets a new command called repl, which launches an interactive shell with
tab-completion.

Integrations

When attempting to integrate todoman into other systems or parse its
output, you’re advised to use the --porcelain flag, which will print all
output in a pre-defined format that will remain stable regardless of user
configuration or version.

The format is JSON, with a single array containing each todo as a single entry
(object). Fields will always be present; if a todo does not have a value for a
given field, it will be printed as null.

Fields MAY be added in future, but will never be removed.

Conky

Todoman can be used with Conky [https://conky.cc] by using one of the shell execution
variables [https://conky.sourceforge.net/variables.html].
Given the nature of pimutils utilities, there is no need to query new information
every time conky updates so execi will be the best option most of the time.

Adding ${execi 30 todo} inside the text section will display the output of the
command and update it every 30 seconds.

A working configuration can be found here [https://github.com/r4ulill0/todoman/blob/main/docs/examples/conky.conf].

Sorting

The tasks can be sorted with the --sort argument. Sorting may be done according to the following fields:

	description

	location

	status

	summary

	uid

	rrule

	percent_complete

	priority

	sequence

	categories

	completed_at

	created_at

	dtstamp

	start

	due

	last_modified

Configuring

Configuring

You’ll need to configure Todoman before the first usage, using its simple
ini-like configuration file.

Configuration File

The configuration file should be placed in
$XDG_CONFIG_HOME/todoman/config.py. $XDG_CONFIG_HOME defaults to
~/.config is most situations, so this will generally be
~/.config/todoman/config.py.

	
cache_path

	The location of the cache file (an sqlite database). This file is used to
store todo data and speed up execution/startup, and also contains the IDs for
todos.
If the value is not specified, a path relative to $XDG_CACHE_HOME will be used.
$XDG_CACHE_HOME generally resolves to ~/.cache/.

	type

	str

	default

	"$XDG_CACHE_HOME/todoman/cache.sqlite3"

	
color

	By default todoman will disable colored output if stdout is not a TTY (value
auto). Set to never to disable colored output entirely, or always
to enable it regardless. This can be overridden with the --color option.

	type

	str

	default

	"auto"

	
date_format

	The date format used both for displaying dates, and parsing input dates. If
this option is not specified the system locale’s is used.

	type

	str

	default

	"%x"

	
default_command

	When running todo with no commands, run this command.

	type

	str

	default

	"list"

	
default_due

	The default difference (in hours) between new todo’s due date and creation
date. If not specified, the value is 24. If set to 0, the due date for new
todos will not be set.

	type

	int

	default

	24

	
default_list

	The default list for adding a todo. If you do not specify this option, you
must use the --list / -l option every time you add a todo.

	type

	str

	default

	None

	
default_priority

	The default priority of a task on creation.
Highest priority is 1, lowest priority is 10, and 0 means no priority at all.

	type

	int

	default

	None

	
dt_separator

	The string used to separate date and time when displaying and parsing.

	type

	str

	default

	" "

	
humanize

	If set to true, datetimes will be printed in human friendly formats like
“tomorrow”, “in one hour”, “3 weeks ago”, etc.

If false, datetimes will be formatted using date_format and
time_format.

	type

	bool

	default

	False

	
path

	A glob pattern matching the directories where your todos are located. This
pattern will be expanded, and each matching directory (with any icalendar
files) will be treated as a list.

	type

	str

	default

	None, this field is mandatory.

	
startable

	If set to true, only show todos which are currently startable; these are
todos which have a start date today, or some day in the past. Todos with no
start date are always considered current. Incomplete todos (eg:
partially-complete) are also included.

	type

	bool

	default

	False

	
time_format

	The date format used both for displaying times, and parsing input times.

	type

	str

	default

	"%X"

Sample configuration

The below example should serve as a reference. It will read ics files from any
directory inside ~/.local/share/calendars/, uses the ISO-8601 date format,
and set the due date for new todos in 48hs.

A glob expression which matches all directories relevant.
path = "~/.local/share/calendars/*"
date_format = "%Y-%m-%d"
time_format = "%H:%M"
default_list = "Personal"
default_due = 48

Color and displayname

	You can set a color for each task list by creating a color file containing
a color code in the hex format: #RRGGBB.

	A file named displayname indicates how the task list should be named and
is needed when there are multiple directories sharing a name, e.g.: when using
multiple $CloudInstances. The default is the directory name.

See also relevant documentation for the vdir format [https://vdirsyncer.pimutils.org/en/stable/vdir.html#metadata].

Timezone

Todoman will use the system-wide configured timezone. If this doesn’t work for
you, you _may_ override the timezone by specifying the TZ environment
variable.

For instruction on changing your system’s timezone, consult your distribution’s
documentation.

Caveats

Support for the percent-completed attribute is incomplete. Todoman can only
mark todos as completed (100%), and will not reflect nor allow editing for
values for percent > 0 ^ percent < 100.

Contributing

For information on contributing, see:
https://todoman.readthedocs.io/en/stable/contributing.html

LICENCE

Todoman is licensed under the ISC licence. See LICENCE for details.

Contributing

Bug reports and code and documentation patches are greatly appreciated. You can
also help by using the development version of todoman and reporting any bugs
you might encounter here [https://github.com/pimutils/todoman/issues].

All participants must follow the pimutils Code of Conduct [http://pimutils.org/coc].

Before working on a new feature or a bug, please browse existing issues to see
whether it has been previously discussed. If the change in question is a bigger
one, it’s always good to open a new issue to discuss it before your starting
working on it.

Hacking

Runtime dependencies are listed in setup.py. We recommend that you use
virtualenv to make sure that no additional dependencies are required without
them being properly documented.
Run pip install -e . to install todoman and its dependencies into a
virtualenv.

We use pre-commit to run style and convention checks. Run pre-commit
install` to install our git-hooks. These will check code style and inform you
of any issues when attempting to commit. This will also run black to
reformat code that may have any inconsistencies.

Commits should follow Git Commit Guidelines [https://www.git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project#_commit_guidelines] whenever possible, including
rewriting branch histories to remove any noise, and using a imperative present
tense for commit summary messages (50 characters maximum).

All commits should pass all tests to facilitate bisecting in future.

An overview of the Todo lifecycle

This is a brief overview of the life cycles of todos (from the apps point of
view) as they are read from disk, displayed, and or saved again.

When the app starts, it will read all todos from disk, and initialize from the
cache any further display (either list, show, edit, etc) is then
done reading from the cache, which only contains the fields with which we
operate. This stage also assigns the id numbers to each todo.

When a Todo is edited, the entire cycle is:

	File is read from disk and cached (if not already cached).

	A Todo object is created by reading the cache.

	If edition is interactive, show the UI now.

	No matter how the edition occurs, apply changes to the Todo object.

	
	Start saving process:
	
	Read file from disk (as a VTodo object).

	Apply changes from fields to the VTodo object.

	Write to disk.

The main goal of this is to simplify how many conversions we have. If we read
from disk to the editor, we’d need an extra VTodo->Todo conversion code that
skips the cache.

Running and testing locally

The easiest way to run tests, it to install tox, and then simply run
tox. By default, several python versions and environments are tested. If
you want to run a specific one use tox -e ENV, where ENV should be one
of the environments listed by tox -l.

See the tox [http://tox.readthedocs.io/en/latest/] documentation for further details.

To run your modified copy of todoman without installing it, it’s
recommended you set up a virtualenv, and run pip install -e . to install
your checked-out copy into it (this’ll make todo run your local copy while
the virtualenv is active).

Authorship

Authors may add themselves to AUTHORS.rst, and all copyright is retained by
them. Contributions are accepted under the ISC licence.

Patch review checklist

Please follow this checklist when submitting new PRs (or reviewing PRs by
others):

CI will automatically check these for us:

	Do all tests pass?

	Does the documentation build?

	Do all linting and style checks pass?

Please keep an eye open for these other items:

	If any features have changed, make sure the docs reflect this.

	If there are any user-facing changes, make sure the Changelog reflects this.

	If there are any dependency changes, make sure the Changelog reflects this.

	If not already present, please add yourself to AUTHORS.rst.

Packaging

We appreciate distributions packaging todoman. Packaging should be relatively
straightforward following usual Python package guidelines. We recommend that
you git-clone tags, and build from source, since these tags are GPG signed.

Dependencies are listed in setup.py. Please also try to include the
extras dependencies as optional dependencies (or what maps best for your
distribution).

You’ll need to run python setup.py build to generate the
todoman/version.py file which is necessary at runtime.

We recommend that you include the Man page in distribution packages. You can
build this by running:

sphinx-build -b man docs/source docs/build/man

The man page will be saved as docs/build/man/todo.1.

Generating the man pages requires that todoman and its doc dependencies (see
requirements-docs.txt) are either installed, or in the current
PYTHONPATH.

Changelog

This file contains a brief summary of new features and dependency changes or
releases, in reverse chronological order.

v4.2.0

	Added full support for categories.

v4.1.0

	The “table” layout has been dropped in favour of a simpler, fluid layout. As
such, tabulate is not longer a required dependency.

	Added support for python 3.10.

v4.0.1

	Fix issue passing arguments to default_command.

	Various documentation improvements.

v4.0.0

Breaking changes in the configuration format

The configuration format is changing with release 4.0.0. We currently depend on
an unmaintained library for configuration. It’s not currently in a working
state, and while some distributions are patching it, setting up a clean
environment is a bit non-trivial, and the situation will only degrade in future.

The changes in format are be subtle, and also come with an intention to add
further extensibility in future. Configuration files will be plain python. If
you don’t know Python don’t worry, you don’t _need_ to know Python.

I’ll take my own config as a reference. The pre-4.0.0 format is:

`dosini
[main]
path = ~/.local/share/calendars/*
time_format = '%H:%M'
default_list = todo
humanize = true
startable = true
`

The 4.0.0 version would look like this:

`python
path = "~/.local/share/calendars/*"
time_format = "%H:%M"
default_list = "todo"
humanize = True
startable = True
`

Key differences:

	The [main] header is no longer needed.

	All strings must be quoted (this was previously optional).

	True and False start with uppercase.

	Using yes or on is no longer valid; only True and False are valid.

That’s basically it. This lets up drop the problematic dependency, and we don’t
actually need anything to read the config: it’s just python code like the rest
of todoman!

For those users who _are_ python developers, you’ll note this gives some
interesting flexibility: you CAN add any custom python code into the config
file. For example, you can defined the path programatically:

def get_path() -> str:
 ...

path = get_path

Dropped support

	Dropped support older Python versions. Only 3.8 and 3.9 are now supported.

Minor changes

	Added support for python 3.9.

	The dependency configobj is no longer required.

	Click 8.0 is now supported.

	Fix crash when default_command has arguments.

v3.9.0

	The man page has been improved. sphinx-click is now required to build the
documentation.

v3.8.0

	Don’t display list if there’s only one list (of one list has been specified).

	Fixed several issues when using dates with no times.

	Dropped support for Python 3.4.

v3.7.0

	Properly support iCal files with dates (instead of datetimes).

v3.6.0

	Allow passing a custom configuration file with the --config/-c option.

	Cached list metadata is now invalidated when it has changed on-disk.

	Support for click < 6.0 has been dropped (it wasn’t actually working
perfectly any more anyway). Click 7.x is the only currently supported
version.

	click-repl is now listed as an optional dependency. It is required for
the todo repl command.

	Add the default_priority config setting.

	Drop support for Python 3.4.

v3.5.0

	Fix crashes due to API changes in icalendar 4.0.3.

	Dropped compatibility for icalendar < 4.0.3.

v3.4.1

	Support Python 3.7.

	Support click>=7.0.

	Properly parse RBGA colours.

v3.4.0

	Add -r option to new to read description from stdin.

	Add a dedicated zsh completion function.

	Lists matching is now case insensitive, unless there are multiple lists with
colliding names, in which case those will be treated case-sensitive.

	Fix some tests that failed due to test dependency changes.

v3.3.0

	New runtime dependency: click-log.

	Drop support for Python 3.3, which has reached its end of life cycle.

	Add –raw flag to edit. This allows editing the raw icalendar file, but
only use this if you really know what you’re doing. There’s a big risk of
data loss, and this is considered a developer / expert feature!

v3.2.4

	Deploy new versions to PyPI using twine. Travis doesn’t seem to be
working.

v3.2.3

	Tests should no longer fail with pyicu installed.

	Improved documentation regarding how to test locally.

v3.2.2

	Initial support for (bash) autocompletion.

	The location field is not printed as part of --porcelain.

v3.2.1

	Fix start-up crash caused by click_log interface change.

	Dropped runtime dependency: click_log.

v3.2.0

	Completing recurring todos now works as expected and does not make if
disappear forever.

v3.1.0

	Last-modified fields of todos are now updated upon edition.

	Sequence numbers are now properly increased upon edition.

	Add new command todo cancel to cancel an existing todo without deleting
it.

	Add a new setting default_command.

	Replace --all and --done-only with --status, which allows
fine-grained status filtering. Use --status ANY or --status COMPLETED
to obtain the same results as the previous flags.

	Rename --today flag to --startable.

	Illegal start dates (eg: start dates that are not before the due date) are
ignored and are removed when saving an edited todo.

v3.0.1

	Fix a crash for users upgrading from pre-v3.0.0, caused due to the cache’s
schema not being updated.

v3.0.0

New features

	Add a today setting and flag to exclude todos that start in the future.

	Add the --humanize to show friendlier date times (eg: in 3 hours).

	Drop --urgent and introduced --priority, which allows fine-filtering
by priority.

	Add support for times in due dates, new time_format setting.

	Use the system’s date format as a default.

	Add list selector to the interactive editor.

	Add --start=[before|after] [DATE] option for list to only show
todos starting before/after given date.

	Add flag “–done-only” to todo list. Displays only completed tasks.

	Make the output of move, delete, copy and flush consistent.

	Porcelain now outputs proper JSON, rather than one-JSON-per-line.

	Increment sequence number upon edits.

	Print a descriptive message when no lists are found.

	Add full support for locations.

Packaging changes

	New runtime dependency: tabulate.

	New runtime dependency: humanize.

	New supported python version: pypy3.

	Include an alternative [much faster] entry point (aka “bin”) which we
recommend all downstream packagers use. Please see the Notes for
Packagers documentation for further details.

v2.1.0

	The global --verbosity option has been introduced. It doesn’t do much for
now though, because we do not have many debug logging statements.

	New PyPI dependency click-log.

	The --no-human-time flag is gone. Integrations/scripts might want to look
at --porcelain as an alternative.

	Fix crash when running todo new.

	Fixes some issues when filtering todos from different timezones.

	Attempt to create the cache file’s directory if it does not exist.

	Fix crash when running --porcelain show.

	Show id for todos everywhere (eg: including new, etc).

	Add the ctrl-s shortcut for saving in the interactive editor.

v2.0.2

	Fix a crash after editing or completing a todo.

v2.0.1

	Fix a packaging error.

v2.0.0

	New flag --porcelain for programmatic integrations to use. See the
integrations section here for details.

	Implement a new configuration option: default_due.

	The configuration file is now pre-emptively validated. Users will be warned
of any inconsistencies.

	The list command has a new --due flag to filter tasks due soon.

	Todo ids are now persisted in a cache. They can be manually purged using
flush.

	New runtime dependency: configobj

	New runtime dependency: python-dateutil

	New test dependency: flake8-import-order.

Licence

Todoman is licensed under the ISC licence:

Copyright (c) 2015-2020, Hugo Osvaldo Barrera <hugo@barrera.io>

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Index

 nav.xhtml

 Table of Contents

 		
 Todoman

 		
 Installing

 		
 Distribution packages

 		
 ArchLinux

 		
 macOS

 		
 Installation via PIP

 		
 Manual installation

 		
 bash autocompletion (optional)

 		
 zsh autocompletion (optional)

 		
 Requirements

 		
 Notes for Packagers

 		
 Configuring

 		
 Configuration File

 		
 Sample configuration

 		
 Color and displayname

 		
 Timezone

 		
 Usage

 		
 Synchronization

 		
 Interactive shell

 		
 Integrations

 		
 Conky

 		
 Sorting

 		
 Man page

 		
 Description

 		
 Usage

 		
 Usage

 		
 Synchronization

 		
 Interactive shell

 		
 Integrations

 		
 Conky

 		
 Sorting

 		
 Configuring

 		
 Configuring

 		
 Configuration File

 		
 Sample configuration

 		
 Color and displayname

 		
 Timezone

 		
 Caveats

 		
 Contributing

 		
 LICENCE

 		
 Contributing

 		
 Hacking

 		
 An overview of the Todo lifecycle

 		
 Running and testing locally

 		
 Authorship

 		
 Patch review checklist

 		
 Packaging

 		
 Changelog

 		
 v4.2.0

 		
 v4.1.0

 		
 v4.0.1

 		
 v4.0.0

 		
 Breaking changes in the configuration format

 		
 Dropped support

 		
 Minor changes

 		
 v3.9.0

 		
 v3.8.0

 		
 v3.7.0

 		
 v3.6.0

 		
 v3.5.0

 		
 v3.4.1

 		
 v3.4.0

 		
 v3.3.0

 		
 v3.2.4

 		
 v3.2.3

 		
 v3.2.2

 		
 v3.2.1

 		
 v3.2.0

 		
 v3.1.0

 		
 v3.0.1

 		
 v3.0.0

 		
 New features

 		
 Packaging changes

 		
 v2.1.0

 		
 v2.0.2

 		
 v2.0.1

 		
 v2.0.0

 		
 Licence

_static/minus.png

_static/plus.png

_static/file.png

